Ergebnis der Suche (319)

Ergebnis der Suche nach: (Freitext: M-LEARNING) und (Quelle: "Bildungsmediathek NRW")

Es wurden 3203 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 310 311 312 313 314 315 316 317 318 319 320 321 Eine Seite vor Zur letzten Seite

Treffer:
3181 bis 3190
  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

  • Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01

    Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009137" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 1 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009366" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 4 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008470" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 1 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008467" }

  • Steckbriefaufgaben zu Parabel mit Nullstellen, Beispiel 2 | A.04.18

    Hat man von einer Parabel beide Nullstellen gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so gibt es zwei mögliche Vorgehensweisen. Die komplizierte Methode wäre, die Nullstellen als normale Punkte zu betrachten und dann ein Gleichungssystem aufzustellen (siehe A.04.15 oder A.04.17). Die geschicktere Methode wäre die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008539" }

  • Mit Intervallschachtelung Nullstellen bestimmen, Beispiel 2 | A.32.03

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Intervallhalbierungsverfahren (auch Bisektionsverfahren) bietet die Möglichkeit Nullstellen der Gleichung zumindest näherungsweise zu bestimmen. Im Prinzip ist die Methode der Intervallhalbierung eine einfache Intervallschachtelung. Blöd gesagt rät man so lange irgendwelche zwei x-Werte, bis man zwei ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009367" }

  • Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 2 | A.06.01

    „Polynome“ heißen auch „ganzrationale Funktionen“ oder „Parabeln höherer Ordnung“. Während man unter „Parabel“ normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer „Parabel dritten Grades“ bzw. „Parabel dritter Ordnung“ eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit „Parabel vierter Ordnung“ ist eine Funktion gemeint, in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008586" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 4 | A.53.04

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009715" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 2 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008334" }

Seite:
Zur ersten Seite Eine Seite zurück 310 311 312 313 314 315 316 317 318 319 320 321 Eine Seite vor Zur letzten Seite