Ergebnis der Suche (5)

Ergebnis der Suche nach: (Freitext: STAMMFUNKTION) und (Schlagwörter: E-LEARNING)

Es wurden 145 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 2 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009419" }

  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 1 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009418" }

  • Exponentialfunktion integrieren bzw. aufleiten | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009417" }

  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 3 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009420" }

  • Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04

    Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009226" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 5 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009426" }

  • Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 5 | A.18.02

    Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008940" }

  • Integrieren von komplizierten Exponentialfunktionen, Beispiel 4 | A.41.06

    Braucht man die Stammfunktion von besonders hässliche Exponentialgleichungen, kann man eigentlich nur die Produktintegration (=partielle Integration) anwenden oder die Integration durch Substitution. Vielleicht kann man auch den ein- oder anderen Trick anwenden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009425" }

  • Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 1 | A.18.02

    Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008936" }

  • Wurzelfunktion integrieren bzw. aufleiten, Beispiel 3 | A.45.03

    Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009592" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite