Ergebnis der Suche (16)

Ergebnis der Suche nach: (Freitext: M��LLVERMEIDUNG) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 292 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite

Treffer:
151 bis 160
  • Die westfälischen Schifffahrtskanäle unter oro-hydrographischen Aspekten

    Jeglicher Schiffsverkehr, der vom Rhein aus deutsche Nordseehäfen, norddeutsche Binnenhäfen oder Häfen an der Ostsee erreichen möchte, muss die "Scheitelhaltung Westfalen" passieren. Dieser Kanalabschnitt besteht aus Teilen des Rhein-Herne-Kanals, des Dortmund-Ems-Kanals und des Datteln-Hamm-Kanals. Sein mittlerer Wasserspiegel liegt auf 56,50 m ü. NHN. Als ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00014465" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 3 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010182" }

  • Populationsmatrizen, Beispiel 3 | M.07.01

    Wenn die Populationsmatrix nicht gegeben ist, muss man natürlich die Populationsmatrix erstellen. Dazu sollte man wissen, wie eine Populationsmatrix gelesen wird (also die anschauliche Bedeutung der Matrix kennen). Die Spalten der Matrix sagen aus, in was sich die Individuen eines Stadiums umwandeln. Bsp. Die erste Zahl der ersten Spalte sagt aus, wieviel Prozent der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010241" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010150" }

  • Simplex-Algorithmus, Beispiel 2 | M.08.02

    Tauchen in der Linearen Optimierung mehr als drei Unbekannte auf, so ist das Problem nur noch rechnerisch lösbar. Dazu braucht man einen Algorithmus (d.h. eine längere Abfolge von Regeln) den man unbedingt lernen muss (geht nicht intuitiv). Dieser Algorithmus heißt „Simplex-Algorithmus“. Wie geht man im Detail vor? Zuerst erstellt man die Ungleichungen aus der gegebenen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010260" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 1 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010180" }

  • LGS lösen: unendlich viele Lösungen mit Gauß-Verfahren | M.02.02

    Um die Lösung eines LGS zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat oder eine Nullzeile erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine der Unbekannten „t“ (oder einen anderen Parameter) und bestimmt nun alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010143" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 3 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010152" }

  • Schreiben Jérôme Bonapartes an Napoleon vom 5.12.1811

    Der König von Westfalen beschreibt in diesem Brief schonungslos die unsichere Situation in den Rheinbundstaaten und appelliert an seinen Bruder, dass er ”die Augen vor diesem Zustand öffne und ... darüber mit der ganzen Überlegenheit (seines) Geistes urteile, um Maßnahmen und Vorsichtsmaßregeln dagegen zu treffen, die (er) für geeignet hält.” Quelle: ...

    Details  
    { "HE": "DE:HE:328156" }

  • Evolution im Unterricht: Eine Studie über fachdidaktisches Wissen (pdf)

    von Lehrerinnen und Lehrern Ausgangspunkt dieser Studie war die Entwicklung des Modells der Didaktischen Rekonstruktion für Lehrerbildung. Das Modell bildet den integrativen Rahmen für Studien zum fachdidaktischen Wissen von Lehrkräften. Die vorliegende Studie über fachdidaktisches Wissen zur Evolution gibt einen Einblick darin, welche Kenntnisse die Lehrenden von den ...

    Details  
    { "HE": "DE:HE:1247410" }

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite