Ergebnis der Suche (6)

Ergebnis der Suche nach: ( (Freitext: ZAHLEN) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 333 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 4 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009739" }

  • Binärcode und Codierung die Sprache der digitalen Welt

    Wie verarbeiten eigentlich Computer oder Smartphones Daten? Was haben die arabischen Zahlen mit dem Binärcode gemeinsam? Mithilfe dieser Arbeitsblätter lernen die Schülerinnen und Schüler ausgehend von Ziffern und Zahlen den Binärcode als Sprache der Computer und Smartphones kennen.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_002143" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 5 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009740" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 4 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010126" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 3 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010125" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010122" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 2 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010124" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 1 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010123" }

  • Primfaktorzerlegung, Beispiel 4 | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009991" }

  • Kleinstes gemeinsames Vielfaches kgV und wie man es bestimmt | B.10.04

    Um das kleinste gemeinsame Vielfache (kgV) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen oder nicht gemeinsamen Primfaktoren zur höchsten Potenz, in der sie vorkommen. Das Produkt davon ist das kgV.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009996" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite