Ergebnis der Suche (9)

Ergebnis der Suche nach: ( (Freitext: STOCHASTIK) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 242 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Poisson-Verteilung Beispiel Stau-Problem, Teil 1 | W.19.01

    Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wird’s natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010831" }

  • Additionssatz | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010750" }

  • Poisson-Verteilung Beispiel Wartezeit-Problem | W.19.02

    Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010834" }

  • Statistik-Diagramme: Boxplot, Histogramm, Kreisdiagramm und mehr | W.11.04

    Es gibt eine Unzahl von Diagrammen. Die (meines Erachtens nach) wichtigsten sind: 1. Säulendiagramm ( = Balkendiagramm = Histogramm ), 2. Kreisdiagramm, 3. Boxplot (bzw. Boxplotdiagramm, zu deutsch: Kastengrafik). Hier erklären wir kurz, wie man vorgeht, um diese drei zu zeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010688" }

  • Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 1 | W.18.02

    Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010821" }

  • Standard-Experimente der Wahrscheinlichkeitsrechnung | W.14

    Eigentlich rechnet man einen Großteil der Aufgaben in der Wahrscheinlichkeitsrechnung mit den immer gleichen Standard-Aufgaben: Würfel, Glücksräder, Urnen (denen entweder mit oder ohne Zurücklegen farbige Kugeln entnommen werden). Hinzu kommen noch diverse Bernoulli Experimente, also Experimente, in denen es nur zwei Ausgangsmöglichkeiten gibt und in denen die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010724" }

  • Additionssatz, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.01

    Der Additionssatz sagt im Wesentlichen aus, dass man nichts doppelt rechnen darf. Konkret heißt das: Die Häufigkeit der Vereinigung zweier Mengen, bestimmt man über die Summe der Häufigkeit von beiden Mengen, abzüglich der Schnittmenge beider Mengen. == P(AUB)=P(A)+P(B)-P(A?B)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010753" }

  • Statistik-Diagramme: Boxplot, Histogramm, Kreisdiagramm und mehr. Beispiel 2 | W.11.04

    Es gibt eine Unzahl von Diagrammen. Die (meines Erachtens nach) wichtigsten sind: 1. Säulendiagramm ( = Balkendiagramm = Histogramm ), 2. Kreisdiagramm, 3. Boxplot (bzw. Boxplotdiagramm, zu deutsch: Kastengrafik). Hier erklären wir kurz, wie man vorgeht, um diese drei zu zeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010690" }

  • Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient | W.16.01

    Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010783" }

  • Totale Wahrscheinlichkeit, Beispiel 3 | W.14.06

    Eine totale Wahrscheinlichkeit ist eine Wahrscheinlichkeit, die sich aus mehreren Fällen zusammensetzt. Z.B. wenn man die W.S. berechnen will, dass eine Person Schmuck trägt, setzt sich das aus der W.S. zusammen, dass eine Frau schmuck trägt, plus der W.S., dass ein Mann Schmuck trägt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010747" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite