Ergebnis der Suche (9)

Ergebnis der Suche nach: ( (Freitext: SEKUNDARSTUFE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 4221 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Dreiseitige Pyramide aus Ebene mit Koordinatenebenen | V.07.01

    Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010592" }

  • Erwartungswert berechnen, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010777" }

  • Punkt an Gerade spiegeln, Beispiel 2 | V.04.03

    Will man Punkt an Gerade spiegeln, braucht man den Lotfußpunkt. (Um den Lotfußpunkt zu berechnen, gibt es wiederum viele Möglichkeiten.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010472" }

  • Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 3 | M.03.02

    Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010178" }

  • Bernoulli-Experiment: Bernoulli-Gleichung, Bernoulli-Verteilung, Bernoulli-Kette; Beispiel 3

    Ein Bernoulli-Experiment (= Bernoulli-Kette = Bernoulli-Verteilung) liegt vor, wenn es nur zwei mögliche Ausgänge für das Experiment gibt und die Wahrscheinlichkeit sich nie ändert. Damit sind sehr, sehr viele Aufgaben der Wahrscheinlichkeit Bernoulli-Experimente!

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010728" }

  • Leslie-Matrix, Übergangsmatrix | M.07

    Die meisten Populationen reproduzieren sich im Laufe von Jahren bzw. von Generationen. Wenn die einzelnen Stadien nicht schön der Reihe nach durchlaufen werden, sondern es teils Sprünge zwischen beliebigen Stadien gibt, werden diese Übergänge durch Matrizen beschrieben. Solche Matrizen heißen: „Übergangsmatrizen“ oder „Populationsmatrix“ oder „Leslie-Matrix“ (auch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010237" }

  • Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010158" }

  • Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010157" }

  • Wirtschaftsmatrizen R-Z-E: leichte Übung Teil b | M.05.03

    Beispielaufgaben zu Wirtschaftsmatrizen beginnen immer, in dem man eine der Matrizen (RZ), (ZE) oder (RE) aus den anderen beiden berechnen muss oder in dem entweder Rohstoffe oder Zwischenprodukte oder Endprodukte gegeben sind, und man eines der anderen berechnen muss. Geht meist recht einfach, man muss sich nur überlegen welche der Formeln man braucht. Da es nur wenig ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010214" }

  • Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 1 | W.12.01

    Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010703" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite