Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: RECHTECK) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 18 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Den vierten Punkt eines Parallelogramms berechnen | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010505" }

  • Den vierten Punkt eines Parallelogramms berechnen, Beispiel 2 | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010507" }

  • Den vierten Punkt eines Parallelogramms berechnen, Beispiel 1 | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010506" }

  • Den vierten Punkt eines Parallelogramms berechnen, Beispiel 3 | V.05.04

    Eine typische Frage ist, den vierten Punkt eines Parallelogramms zu berechnen. Das ist einfach. Annahme, man muss D berechnen. Man addiert den Vektor BC zum Punkt A und erhält D. (Das Ganze klappt natürlich auch beim Rechteck, Quadrat oder bei einer Raute, weil alle diese besondere Parallelogramme sind).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010508" }

  • Riemann-Integral

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Das Riemann-Integral ist eine Methode zur numerischen Integration. An dieser Stelle wird es erklärt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004517" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 3 | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010334" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 2 | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010333" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010331" }

  • Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 1 | T.06.09

    Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010332" }

  • Kreuzprodukt | V.05.03

    Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010497" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite