Ergebnis der Suche (9)

Ergebnis der Suche nach: ( (Freitext: MATRIX) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: MATHEMATIK)

Es wurden 100 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Partielle Ableitung, Beispiel 2 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009654" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 1 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010187" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 2 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010188" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 3 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010189" }

  • Partielle Ableitung | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009652" }

  • Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010274" }

  • Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil a | M.06.02

    Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010225" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

  • Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010271" }

  • Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010273" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite