Ergebnis der Suche (10)

Ergebnis der Suche nach: ( (Freitext: MATRIX) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 97 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 97
  • Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil b | M.06.02

    Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010226" }

  • Leontief, Leontief-Formel y=(E–A)·x: leichte Übung | M.06.02

    Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010224" }

  • Affine Abbildung; Eigenvektor | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Matrizen und Lineares Gleichungssystem: was ist das überhaupt?

    In der Mathematik hat man ganz häufig die Situation, mehrere Unbekannte bestimmen zu müssen, für die es wiederum mehrere Gleichungen gibt. Mehrere Gleichungen mit mehreren Unbekannten heißen „Gleichungssystem“. Im häufigsten Fall tritt keine Unbekannte quadratisch oder in einer höheren Potenz auf, man spricht daher vom „linearen Gleichungssystem“, offizielle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010133" }

  • Determinante: was ist das überhaupt und wie kann man Determinanten berechnen? | M.04

    Eine Determinante ist einfach eine Zahl, die man einer Matrix zuordnet. Determinanten kann man nur bei quadratischen Matrizen ausrechnen! (Bei nicht-quadratischen Matrizen ist die Determinante immer Null.) Ganz pauschal kann man sagen, dass es immer böse ist, wenn die Determinante Null ist. (Ein Gleichungssystem ist nicht lösbar, wenn die Determinante Null ist; man kann eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010190" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite