Ergebnis der Suche (11)

Ergebnis der Suche nach: ( (Freitext: MATRIX) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MATHEMATIK)

Es wurden 112 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil b | M.06.02

    Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010226" }

  • Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010275" }

  • Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010270" }

  • Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010272" }

  • Affine Abbildung; Eigenvektor | M.09.02

    Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010269" }

  • Matrizen und Lineares Gleichungssystem: was ist das überhaupt?

    In der Mathematik hat man ganz häufig die Situation, mehrere Unbekannte bestimmen zu müssen, für die es wiederum mehrere Gleichungen gibt. Mehrere Gleichungen mit mehreren Unbekannten heißen „Gleichungssystem“. Im häufigsten Fall tritt keine Unbekannte quadratisch oder in einer höheren Potenz auf, man spricht daher vom „linearen Gleichungssystem“, offizielle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010133" }

  • Determinante: was ist das überhaupt und wie kann man Determinanten berechnen? | M.04

    Eine Determinante ist einfach eine Zahl, die man einer Matrix zuordnet. Determinanten kann man nur bei quadratischen Matrizen ausrechnen! (Bei nicht-quadratischen Matrizen ist die Determinante immer Null.) Ganz pauschal kann man sagen, dass es immer böse ist, wenn die Determinante Null ist. (Ein Gleichungssystem ist nicht lösbar, wenn die Determinante Null ist; man kann eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010190" }

  • Tangentialebene: Tangente einer mehrdimensionalen Funktion | A.51.03

    Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009666" }

  • Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 1 | A.51.03

    Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009667" }

  • worksheeps - unendlich viele Matheaufgaben und -Lösungen

    Durch Zusammenarbeit der Mathelehrer des HMGs in Leutkirch mit einem Studenten wurde die e-Learning Mathematik-Plattform ins Leben gerufen. Die Webseite bietet die Möglichkeit sich selbst Übungsblätter/Übungsaufgaben mit Lösungen zu verschiedensten Themen aus dem Bereich Mathematik zu erstellen. Nachdem eine Übungsseite erstellt wurde, bleibt diese, z.B. für ...

    Details  
    { "DBS": "DE:DBS:35648" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite