Ergebnis der Suche (31)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: E-LEARNING)

Es wurden 376 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 25 26 27 28 29 30 31 32 33 34 35 36 Eine Seite vor Zur letzten Seite

Treffer:
301 bis 310
  • Rechnen können mit GTR / CAS - Abituraufgabe 4a | A.29.05

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Haben Sie versucht ein Ei mit den Augen eines Mathematikers zu sehen? Vermutlich ist diese Aufgabe also Ihr „erstes Mal“. Man nimmt eine Ellipse, betrachtet deren Rotation um die x-Achse und erhält ein Ei. Die Gleichung der benötigten Ellipse erhalten wir über eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009296" }

  • Aus dem Schaubild einer Wurzelfunktion die Funktionsgleichung erstellen, Beispiel 3 | A.45.08

    Beim Zeichnen von Wurzelfunktionen, ist der „Anfangspunkt“ wichtig. Nennen wir den Punkt R mit den Koordinaten R(r|s). Zeigt das Schaubild der Wurzel nach rechts, so ist der Ansatz: f(x)=a·wurzelaus(x-r)+s. Zeigt das Schaubild der Wurzel nach links, so ist der Ansatz: f(x)=a·wurzelaus(-x+r)+s. Den Parameter „a“ erhält man, indem man einen beliebigen Punkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009613" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009716" }

  • Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 1 | A.51.03

    Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009667" }

  • Schaubilder von Funktionen | A.27

    Es gibt im Wesentlichen drei Typen von Fragen rund um Schaubilder von Funktionen in den vier Quadranten: 1.verschiedene Schaubilder und verschiedene Funktionsgleichungen sind gegeben und man muss jedes Schaubild den einzelnen Funktionen zuordnen. 2.nur ein Schaubild ist gegeben und man muss die Funktionsgleichung finden, die dazu passt. (Manchmal ist auch eine Funktion in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009198" }

  • Analysis 4 | die verschiedenen Funktionstypen, ihre Besonderheiten und wie man mit ihnen rechnet

    Wie der Kapitelname schon vermuten lässt, betrachten wir hier die verschiedenen Funktionstypen mit ihren Besonderheiten. Speziell gehen wir auf sechs Funktionstypen ein: 1.Exponentialfunktionen (e-Funktionen), 2.Trigonometrische Funktionen (sin oder cos), 3.Gebrochen-rationale Funktionen (Bruch-Funktionen), 4.Logarithmus-Funktionen, 5.Wurzelfunktionen, 6.Ganzrationale ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009387" }

  • Volumen Kegel und Volumen Zylinder berechnen, Beispiel 1 | A.21.05

    Einen Kegel erhält man, wenn ein Dreieck um eine Seite rotiert, einen Zylinder erhält man, wenn ein Rechteck um eine der Seiten rotiert. Ein Kegelvolumen berechnet man über: V=pi/3*r²*h, ein Zylindervolumen berechnet man über V=pi*r²*h. Man braucht also in beiden Fällen den Radius und die Höhe. Beides sind im Normalfall waagerechte oder senkrechte Strecken, welche man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009052" }

  • Logistisches Wachstum mit Differentialgleichung berechnen | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009340" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 4 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009334" }

  • Kubische Parabel | A.05

    Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Parabelschar“ (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man „Scharparabel“ (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008549" }

Seite:
Zur ersten Seite Eine Seite zurück 25 26 27 28 29 30 31 32 33 34 35 36 Eine Seite vor Zur letzten Seite