Ergebnis der Suche (10)

Ergebnis der Suche nach: ( (Freitext: GRUNDLAGEN) und (Schlagwörter: ABLEITUNG) ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 196 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Wurzel integrieren; Brüche integrieren, Beispiel 6 | A.14.02

    Viele Wurzeln und Brüche kann man so umschreiben, so dass die Ableitung wesentlich einfacher wird. Brüche: Wenn oben im Zähler kein „x“ steht, sondern nur Zahlen und unten im Nenner weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen, indem man das Vorzeichen der Hochzahl wechselt. Wurzeln: man schreibt die Wurzel um, und zwar in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008827" }

  • Tangente außerhalb, Beispiel 4 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008889" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008627" }

  • Tangente außerhalb, Beispiel 5 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008890" }

  • Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 2 | A.11.07

    Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008652" }

  • Tangente außerhalb, Beispiel 3 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008888" }

  • Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 1 | A.11.07

    Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008651" }

  • Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 3 | A.11.07

    Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008653" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 2 | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008634" }

  • Partialbruchzerlegung, Beispiel 3 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008859" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite