Ergebnis der Suche (6)

Ergebnis der Suche nach: ( ( (Freitext: ZAHLEN) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Quelle: "Bildungsmediathek NRW") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 187 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Komplexe Zahlen umrechnen von einer Form in eine andere Form | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009735" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 6 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009741" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009737" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 3 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010125" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 2 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010124" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 4 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010126" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge, Beispiel 1 | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010123" }

  • Bruchgleichungen: so bestimmt man die Definitionsmenge | G.06.02

    Die Definitionsmenge einer Bruchgleichung sind alle Zahlen, die man für „x“ einsetzen darf. Man bestimmt sie ähnlich wie den Hauptnenner. Man klammert alles im Nenner aus, was sich ausklammern lässt und wendet danach überall binomische Formeln an, wo es überhaupt eine gibt. Nun hat man den Nenner komplett in Faktoren zerlegt. Jeden einzelnen Faktor setzt man Null und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010122" }

  • Primfaktorzerlegung, Beispiel 4 | B.10.02

    Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009991" }

  • Größter gemeinsamer Teiler ggT und wie man ihn bestimmt, Beispiel 3 | B.10.03

    Um den größten gemeinsamen Teiler (ggT) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen Primfaktoren in der kleinsten Potenz in der sie vorkommen. Das Produkt davon ist der ggT.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009995" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite