Ergebnis der Suche (3)

Ergebnis der Suche nach: ( ( (Freitext: ZAHLEN) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Schlagwörter: "HÖHERE MATHEMATIK") ) und (Schlagwörter: VIDEO)

Es wurden 48 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Cardanische Formel zur Lösung einer Gleichung dritten Grades, Beispiel 2 | A.54.08

    Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009766" }

  • Cardanische Formel zur Lösung einer Gleichung dritten Grades | A.54.08

    Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009764" }

  • Cardanische Formel zur Lösung einer Gleichung dritten Grades, Beispiel 1 | A.54.08

    Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009765" }

  • Wurzel von komplexen Zahlen ziehen, Beispiel 2 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009756" }

  • Wurzel von komplexen Zahlen ziehen | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009754" }

  • Wurzel von komplexen Zahlen ziehen, Beispiel 3 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009757" }

  • Wurzel von komplexen Zahlen ziehen, Beispiel 1 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009755" }

  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009723" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 6 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009748" }

  • Komplexe Zahlen dividieren und Kehrwert bilden | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009742" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite