Ergebnis der Suche (6)

Ergebnis der Suche nach: ( ( (Freitext: WERT) und (Schlagwörter: VIDEO) ) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: KOORDINATE)

Es wurden 104 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Mit Newton-Verfahren Nullstellen bestimmen, Beispiel 1 | A.32.02

    Es gibt in Mathe viele Gleichungen, die sich nicht lösen lassen. Das Newton-Verfahren (auch: Newton-Iteration) verwendet man, um Nullstellen einer Gleichung zumindest näherungsweise zu bestimmen. Für die Newtoniteration gibt es eine Formel. In diese Formel setzt man einen (beliebigen) x-Wert ein und erhält als Ergebnis ein besseren x-Wert, also einen x-Wert der näher an ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009361" }

  • Abstand Punkt-Funktion berechnen, Beispiel 2 | A.21.07

    Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009061" }

  • Abstand Punkt-Funktion berechnen, Beispiel 3 | A.21.07

    Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009062" }

  • Abstand Punkt-Funktion berechnen | A.21.07

    Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009059" }

  • Abstand Punkt-Funktion berechnen, Beispiel 1 | A.21.07

    Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009060" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009702" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009704" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 4 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009706" }

  • Geraden einzeichnen, Beispiel 5 | A.02.01

    Das Einzeichnen einer Gerade ist sehr einfach. Man muss nur wissen, welche Zahl der Gerade welche Bedeutung hat. Nehmen wir an, die Gerade hat die Form: y=m*x+b. Man beginnt mit „b“, das ist der y-Achsen Abschnitt (der Schnittpunkt mit der y-Achse). „m“ ist die Steigung. Man beginnt also beim Schnittpunkt mit der y-Achse (den man eben eingezeichnet hat), geht immer eins ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008343" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 Eine Seite vor Zur letzten Seite