Ergebnis der Suche (4)

Ergebnis der Suche nach: ( ( (Freitext: STEIGUNG) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: "GERADE (MATHEMATIK)") ) und (Schlagwörter: KOORDINATE)

Es wurden 39 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 39
  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 4 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009219" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 6 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009221" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009215" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 5 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009220" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 1 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009216" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009485" }

  • Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01

    Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibt’s im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009159" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009486" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite