Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( (Freitext: SEKUNDARSTUFE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Quelle: "Bildungsmediathek NRW") ) und (Schlagwörter: ANALYSIS)

Es wurden 1282 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Parabel, Hyperbel, Exponentialfunktion: wie man mit verschiedenen Funktionstypen rechnet | A.06

    Von manchen Funktionstypen werden schon recht „früh“ diverse Gesichtspunkte betrachtet. Von Parabeln (ganzrationale Funktionen), Hyperbeln und Exponentialfunktionen sind an dieser Stelle hauptsächlich Grenzwertbetrachtungen relevant (Limes) und das ungefähre Aussehen dieser Funktionen im Koordinatensystem. Dazu noch ein paar andere Kleinigkeiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008583" }

  • Parabel verschieben, Beispiel 1 | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008491" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009248" }

  • Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 3 | A.04.07

    Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008489" }

  • Wurzel ableiten; Brüche ableiten | A.13.02

    Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein „x“ steht, sondern nur Zahlen und unten weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008768" }

  • Umkehrfunktion berechnen, Beispiel 4 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009234" }

  • Flächen berechnen bzw. Integral berechnen mit der Stammfunktion F(x) | A.11.04

    Fläche berechnen bzw. Integral berechnen: Die Stammfunktion F(x) benötigt man, um eine Fläche oder ein Integral zu berechnen. Die Stammfunktion nennt man auch Flächenfunktion.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008637" }

  • Ausklammern aus Gleichungen, Beispiel 7 | A.12.03

    Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008688" }

  • Umkehrfunktion berechnen, Beispiel 7 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009237" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 8 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009256" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite