Ergebnis der Suche (5)

Ergebnis der Suche nach: ( ( (Freitext: M-LEARNING) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 358 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Herstellkosten berechnen, Beispiel 2 | M.05.02

    Die Fertigungskosten bei wirtschaftlichen Anwendungen berechnen sich über die Formel: kvar=kr*(RE)+kz*(ZE)+ke. Hierbei sind kvar die variablen Herstellkosten für die Endprodukte, kr, kz und ke der sind Zeilenvektoren der Rohstoffkosten, der Zwischenprodukte und der Endprodukte. (RE) und (ZE) sind natürlich die Rohstoff-Endprodukt-Matrix bzw. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010210" }

  • Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil b | M.06.02

    Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010226" }

  • LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03

    Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010148" }

  • Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02

    Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von „x1“, „x2“, „x3“, .. bestimmen, welche zusammen den Lösungsvektor ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010137" }

  • Wirtschaftsmatrizen R-Z-E: Zusammenhang zwischen den Matrizen, Beispiel 1 | M.05.01

    Es gibt nur eine einzige Formel die den Zusammenhang zwischen den Matrizen der wirtschaftlichen Anwendungen beschreibt: (RZ)*(ZE)=(RE). Benötigt man die (RZ)-Matrix, muss man die Formel umstellen zu: (RZ)=(RE)*(ZE)^-1. Benötigt man die (ZE)-Matrix, wird die Formel umgestellt zu: (ZE)=(RZ)^-1*(RE).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010205" }

  • Herstellkosten berechnen, Beispiel 3 | M.05.02

    Die Fertigungskosten bei wirtschaftlichen Anwendungen berechnen sich über die Formel: kvar=kr*(RE)+kz*(ZE)+ke. Hierbei sind kvar die variablen Herstellkosten für die Endprodukte, kr, kz und ke der sind Zeilenvektoren der Rohstoffkosten, der Zwischenprodukte und der Endprodukte. (RE) und (ZE) sind natürlich die Rohstoff-Endprodukt-Matrix bzw. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010211" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen; Beispiel 3 | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010338" }

  • Kegel, Kegelvolumen, Kegelfläche, Mantelfläche berechnen | T.06.10

    Ein Kegel hat unten einen Kreis und oben eine Spitze. Das Volumen berechnet man über V=1/3*r²*h. Die Oberfläche setzt sich aus dem Grundkreis und der Mantelfläche zusammen. Letztere berechnet man über M=pi*r*s, wobei s die Seitenlinie ist. Alles ganz lustig und toll und spannend, wie bei jedem Spitzkörper.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010335" }

  • Affine Abbildung | M.09

    Eine affine Abbildung wird durch Matrizen beschrieben. Die Matrizen nehmen Vektoren (als eine Art x-Werte) und machen daraus neue Vektoren (eine Art y-Werte). Die Abbildungen können Drehungen sein, Verschiebungen, Streckungen, Spiegelungen, Scherungen und noch ein paar andere Möglichkeiten. Die ein- oder andere Idee ist noch wichtig, das machen wir hier ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010261" }

  • Fixvektor, stationäre Verteilung; Beispiel 1 | M.07.03

    Im Normalfall gibt es zu jeder Populationsmatrix eine Verteilung zwischen den verschiedenen Stationen, die die Eigenschaft hat, sich im Laufe der Zeit nicht zu ändern. Diese Verteilung heißt „Fixvektor“ oder „Fixpunkt“ oder „stationäre Verteilung“. Zum Berechnen setzt man immer gleich an: (Populationsmatrix) mal (unbekannter Vektor) gleich (nochmal unbekannter ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010247" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite