Ergebnis der Suche (13)

Ergebnis der Suche nach: ( ( (Freitext: M-LEARNING) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 323 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite

Treffer:
121 bis 130
  • Wirtschaftsmatrizen R-Z-E: Beispiel für Fortgeschrittene, Teil c | M.05.04

    In fast jeder längeren Beispielaufgabe hat man irgendwann mal den Fall, dass man einen Zusammenhang z.B. zwischen Rohstoffen und Endprodukten braucht, jedoch weder alle Mengeneinheiten der Rohstoffe, noch die der Endprodukte gegeben sind. Man muss also mit Parametern rechnen. Theoretisch wendet man nur eine der drei Formeln: (RZ)*(Z)=(R), (ZE)*(E)=(Z) oder (RE)*(E)=(R) an, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010219" }

  • Inverse Matrix: so kann man eine Matrix invertieren, Beispiel 2 | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010181" }

  • Input-Output berechnen mit der Input-Output-Matrix | M.06.01

    Üblicherweise hat man eine Input-Output-Matrix gegeben. Um daraus die Input-Matrix zu erhalten, teilt man die komplette erste Spalte durch den ersten Eintrag der Produktionsmenge. Die zweite Spalte teilt man durch den zweiten Eintrag des Produktionsvektors. Die dritte Spalte teilt man durch den dritten Eintrag der Produktionsmenge. Das war´s auch schon. Mit Hilfe der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010221" }

  • Wirtschaftsmatrizen R-Z-E: Beispiel für Fortgeschrittene, Teil b | M.05.04

    In fast jeder längeren Beispielaufgabe hat man irgendwann mal den Fall, dass man einen Zusammenhang z.B. zwischen Rohstoffen und Endprodukten braucht, jedoch weder alle Mengeneinheiten der Rohstoffe, noch die der Endprodukte gegeben sind. Man muss also mit Parametern rechnen. Theoretisch wendet man nur eine der drei Formeln: (RZ)*(Z)=(R), (ZE)*(E)=(Z) oder (RE)*(E)=(R) an, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010218" }

  • Inverse Matrix: so kann man eine Matrix invertieren | M.03.03

    Um zu verstehen, was eine inverse Matrix ist, muss man bei der Einheitsmatrix beginnen. (Die Einheitsmatrix ist eine Matrix, die überall Nullen hat, und nur in der Diagonale Einsen hat.) Wenn man nun irgendeine Matrix hat, so ist die zugehörige Inverse diejenige Matrix, mit der man die Ausgangsmatrix multiplizieren muss, um die Einheitsmatrix zu erhalten. Das Verfahren ist ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010179" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010150" }

  • Simplex-Algorithmus, Beispiel 1 | M.08.02

    Tauchen in der Linearen Optimierung mehr als drei Unbekannte auf, so ist das Problem nur noch rechnerisch lösbar. Dazu braucht man einen Algorithmus (d.h. eine längere Abfolge von Regeln) den man unbedingt lernen muss (geht nicht intuitiv). Dieser Algorithmus heißt „Simplex-Algorithmus“. Wie geht man im Detail vor? Zuerst erstellt man die Ungleichungen aus der gegebenen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010259" }

  • Matrix lösen: eindeutige Lösung mit Gauß-Verfahren, Beispiel 4 | M.02.04

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem genau so viele Gleichungen hat wie Unbekannte (die Matrix also EINE Spalte mehr hat als Zeilen) und NACH dem Gauß-Verfahren nirgends in der Diagonale eine Null steht, erhält man für jede der Unbekannten genau eine Lösung, man hat also eine „eindeutige ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010153" }

  • Input-Output berechnen mit der Input-Output-Matrix, Beispiel 1 | M.06.01

    Üblicherweise hat man eine Input-Output-Matrix gegeben. Um daraus die Input-Matrix zu erhalten, teilt man die komplette erste Spalte durch den ersten Eintrag der Produktionsmenge. Die zweite Spalte teilt man durch den zweiten Eintrag des Produktionsvektors. Die dritte Spalte teilt man durch den dritten Eintrag der Produktionsmenge. Das war´s auch schon. Mit Hilfe der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010222" }

  • Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.05

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010156" }

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite