Ergebnis der Suche (5)

Ergebnis der Suche nach: ( ( (Freitext: GLEICHUNG) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 232 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Senkrechte Asymptote berechnen, Beispiel 7 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008904" }

  • Senkrechte Asymptote berechnen, Beispiel 9 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008906" }

  • Senkrechte Asymptote berechnen, Beispiel 6 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008903" }

  • Senkrechte Asymptote berechnen | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008897" }

  • Senkrechte Asymptote berechnen, Beispiel 4 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008901" }

  • Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 2 | G.04.01

    Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010072" }

  • Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 3 | G.04.01

    Wenn man Glück hat, ist die quadratische Gleichung als „Linearfaktorform“ gegeben (Abkürzung „LF“ oder „LFF“). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit „Mal“ verbunden sind, in jeder Klammer nur „x“ steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010073" }

  • Quadratische Gleichungen mit der Form ax²+bx=0 lösen, Beispiel 1 | G.04.04

    Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010083" }

  • Quadratische Gleichungen mit der Form ax²+bx=0 lösen | G.04.04

    Falls in einer quadratischen Gleichung keine Zahl ohne „x“ steht, falls die Gleichung also die Form hat: „ax²+bx=0“, klammert man am einfachsten ein „x“ aus. Nun ist x=0 oder die Klammer ist Null. Die klammer löst man nach „x“ auf und hat die zweite Lösung für x. Das Ganze nennt sich „Satz vom Nullprodukt“ (SNP) und ist eigentlich ein Sonderfall der „Lösung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010082" }

  • Cardanische Formel zur Lösung einer Gleichung dritten Grades | A.54.08

    Es gibt tatsächlich eine Lösungsformel, mit welcher man Gleichungen dritten Grades lösen kann (ähnlich wie die p-q-Formel oder a-b-c-Formel bei quadratischen Gleichungen). Diese Formel heißt Cardanische Formel (oder Cardanische Lösungsformel). Sie ist ziemlich abgefahren, hässlich und lang. Desweiteren braucht man die Theorien der komplexen Zahlen dafür. Eigentlich ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009764" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite