Ergebnis der Suche (7)

Ergebnis der Suche nach: ( ( (Freitext: GLEICHUNG) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: KOORDINATE)

Es wurden 158 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008631" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008629" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 3 | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009626" }

  • Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009707" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009623" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009708" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008632" }

  • Nullstellen von ganzrationalen Funktionen berechnen über Horner-Schema, Beispiel 2 | A.46.02

    Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur das Horner-Schema als Notlösung übrig (oder die Polynomdivision, welche eine andere Variante des Horner-Schemas ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009625" }

  • Geraden mit Parameter, Beispiel 1 | A.02.17

    Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Geradenschar“ (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man „Schargerade“ (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008427" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009705" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite