Ergebnis der Suche (9)

Ergebnis der Suche nach: ( ( (Freitext: FUNKTION) und (Schlagwörter: VIDEO) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: "GERADE (MATHEMATIK)")

Es wurden 313 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008916" }

  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 2 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008917" }

  • Kubische Funktion, Tangenten kubischer Parabeln berechnen, Beispiel 3 | A.05.05

    Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008569" }

  • Mehrdimensionale Funktion: kurze Erklärung | A.51

    Funktionen müssen natürlich nicht zwingend nur von einer Variablen abhängen (also nur von „x“). Eine Funktion kann auch mehrere „x-Werte“ haben, sie heißen dann auch „mehrdimensionale Funktionen“. Diese x-Werte heißen dann entweder x, y, z, .. oder „x1“, „x2“, „x3“, Meist interessiert man sich nun für Extrempunkte, Tangenten (die nun aber keine Gerade sind, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009651" }

  • Kubische Funktion, Tangenten kubischer Parabeln berechnen, Beispiel 1 | A.05.05

    Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008567" }

  • Kubische Funktion, Tangenten kubischer Parabeln berechnen, Beispiel 2 | A.05.05

    Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008568" }

  • Kubische Funktion, Tangenten kubischer Parabeln berechnen | A.05.05

    Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008566" }

  • Funktionen spiegeln über Verschieben, Beispiel 5 | A.23.05

    Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009130" }

  • Funktionen spiegeln über Verschieben, Beispiel 1 | A.23.05

    Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009126" }

  • Funktionen spiegeln über Verschieben, Beispiel 6 | A.23.05

    Wenn man eine Funktion spiegeln will, z.B. an einer senkrechten Gerade der Form x=a, so verschiebt man die Funktion f(x) erst in waagerechte Richtung um „-a“, dann spiegelt man die Funktion an der y-Achse und schiebt die Funktion wieder um „a“ zurück. Benötigt man die Spiegelungen an einer waagerechten Geraden y=b, so verschiebt man f(x) in senkrechte Richtung um „-b“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009131" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite