Ergebnis der Suche (9)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MATHEMATIK)

Es wurden 1729 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite

Treffer:
81 bis 90
  • p-q-Formel, Mitternachtsformel, Beispiel 1 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008708" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u²

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008789" }

  • Logarithmus: so einfach kann man den Logarithmus berechnen | B.06.01

    Die einfachen Logarithmenaufgaben löst man mit den Regeln der Potenzrechnung. Normalerweise muss man nur den Logarithmus als Potenz umschreiben, um die wichtigsten Schritte durchführen zu können. Manchmal helfen auch die Logarithmenregeln um den Logarithmus berechnen zu können.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009889" }

  • Logarithmus: was ist das überhaupt? Und wie rechnet man damit richtig? | B.06

    Ein Logarithmus ist eine unbekannte Hochzahl in einer Potenzrechnung. Z.B. nennt man „x“ in der Rechnung 2^x=5 den Logarithmus von 5 zur Basis 2. Im Prinzip ist die Logarithmenrechnung also eine Art Potenzrechnung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009888" }

  • Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen, Beispiel 1

    Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009522" }

  • Mit der Kettenregel eine verkettete Funktion ableiten | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008775" }

  • p-q-Formel, Mitternachtsformel, Beispiel 4 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008711" }

  • Beispielaufgaben zu Ableitungen, Beispiel 5 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008801" }

  • Lineares Wachstum berechnen | A.30.01

    Das lineare Wachstum ist sehr, sehr einfach. Es handelt sich hierbei einen Bestand mit einer gleichmäßigen Entwicklung, es kommt also in jeder Zeitspanne immer die gleiche Menge dazu (oder geht weg). Das lineare Wachstum wird durch eine Gerade beschrieben, der Ansatz lautet also: B(t)=m*t+b

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009302" }

  • Polynome über Nullstellen aufstellen, Beispiel 1 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009633" }

Seite:
Zur ersten Seite Eine Seite zurück 3 4 5 6 7 8 9 10 11 12 13 14 Eine Seite vor Zur letzten Seite