Ergebnis der Suche (7)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 1008 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 5 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009253" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u²

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008789" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 4 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009252" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 6 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009254" }

  • Ableitung der Umkehrfunktion | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009258" }

  • Parabel, Hyperbel, Exponentialfunktion: wie man mit verschiedenen Funktionstypen rechnet | A.06

    Von manchen Funktionstypen werden schon recht „früh“ diverse Gesichtspunkte betrachtet. Von Parabeln (ganzrationale Funktionen), Hyperbeln und Exponentialfunktionen sind an dieser Stelle hauptsächlich Grenzwertbetrachtungen relevant (Limes) und das ungefähre Aussehen dieser Funktionen im Koordinatensystem. Dazu noch ein paar andere Kleinigkeiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008583" }

  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 5 | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008840" }

  • Umkehrfunktion berechnen, Beispiel 7 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009237" }

  • Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 2 | A.44.04

    Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009552" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 1 | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u131

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008790" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite