Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: ABLEITUNG)

Es wurden 368 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Komplizierte Exponentialfunktionen ableiten, Beispiel 3 | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009413" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen, Beispiel 2 | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009511" }

  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009505" }

  • Wurzelfunktion ableiten | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009581" }

  • Mit L'Hospital Grenzwerte bestimmen | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009678" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 5 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008766" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 2 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008763" }

  • Beispielaufgaben zu Ableitungen, Beispiel 2 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008798" }

  • Wurzelfunktion ableiten, Beispiel 2 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009583" }

  • Gebrochen-rationale Funktion / Bruchfunktionen: kurze Einführung | A.43

    Bruchfunktionen sind natürlich Funktionen in Bruchform. Tatsächlich heißen sie „gebrochen-rationale Funktionen“ oder „gebrochene Funktionen“. Das typische Merkmal dieser Funktionen sind senkrechte Asymptoten (Polstellen), die das Schaubild in zwei oder mehrere Teile aufteilt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009500" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite