Ergebnis der Suche (14)

Ergebnis der Suche nach: ( ( (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 1653 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite

Treffer:
131 bis 140
  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009505" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 6 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009254" }

  • Ableitung der Umkehrfunktion | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009258" }

  • Schnittpunkt von Geraden berechnen | A.02.07

    Will man zwei Funktionen schneiden, muss man die gleich setzen und nach „x“ auflösen. Man setzt den erhaltenen x-Wert in eine der beiden Funktionen ein, um den y-Wert vom Schnittpunkt zu erhalten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008372" }

  • Horner-Schema, Beispiel 3 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008743" }

  • Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 5 | A.01.02

    Die Steigung (heißt auch „Anstieg“) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2–y1)/(x2–x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008314" }

  • Mittelwert und Durchschnitt einer Funktion berechnen, Beispiel 1 | A.18.07

    Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008971" }

  • Extremwertaufgaben, schwierige Übungen | A.21.09

    Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009067" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 1 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008762" }

  • Ausklammern aus Gleichungen, Beispiel 11 | A.12.03

    Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008692" }

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite