Ergebnis der Suche (5)

Ergebnis der Suche nach: ( ( (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: VIDEO) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 1046 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 2 | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008837" }

  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 6 | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008841" }

  • Symmetrie von Funktionen und wie man damit rechnet | A.17

    Funktionen können zwei Typen von Symmetrie aufweisen: Punktsymmetrie oder Achsensymmetrie zu einer senkrechten Achse. (Eine Funktion kann zu waagerechten Geraden nicht symmetrisch sein!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008914" }

  • Funktion verschieben, Funktion strecken, Funktion spiegeln | A.23

    Man kann Funktionen strecken (mit einem bestimmten Streckfaktor), Funktionen spiegeln und Funktionen verschieben. Es gibt für jedes je eine mathematische Vorgehensweise, welche sich zu merken lohnt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009096" }

  • Polynom bzw. ganzrationale Funktion ableiten | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008761" }

  • Mittelpunkt berechnen, Beispiel 2 | A.01.01

    Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008306" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 5 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009253" }

  • Mittelpunkt berechnen, Beispiel 1 | A.01.01

    Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008305" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 1 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009880" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 4 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009883" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite