Ergebnis der Suche (22)

Ergebnis der Suche nach: ( ( (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: E-LEARNING) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 1035 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 16 17 18 19 20 21 22 23 24 25 26 27 Eine Seite vor Zur letzten Seite

Treffer:
211 bis 220
  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009505" }

  • Wurzelfunktion ableiten, Beispiel 3 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009584" }

  • Integrieren von komplizierten Wurzelfunktionen, Beispiel 3 | A.45.04

    Bei hässlichen Stammfunktionen, die eine Wurzel enthalten, braucht man meist die Substitution oder die Produktintegration (partielle Integration). Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009596" }

  • Ungleichungen höherer Potenz, Beispiel 4 | A.26.03

    Eine „höhere Ungleichung“ oder besser eine „Ungleichung höherer Potenz“ ist eine Ungleichung, in welcher höhere Potenzen von „x“ auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009191" }

  • Beispielaufgaben zu Ableitungen, Beispiel 2 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008798" }

  • Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 3 | A.02.21

    Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008434" }

  • Komplizierte trigonometrische Funktion ableiten, Beispiel 4 | A.42.05

    Bei hässlicheren trigonometrischen Funktionen kann in der Ableitung noch die Produktregel oder die Kettenregel (evtl. auch Quotientenregel) auftauchen. In der Theorie ist das auch schon alles. In der Praxis wird’s manchmal etwas hässlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009475" }

  • Fläche berechnen zwischen Funktion und x-Sachse | A.18.02

    Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008935" }

  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 3 | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009508" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 3 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008764" }

Seite:
Zur ersten Seite Eine Seite zurück 16 17 18 19 20 21 22 23 24 25 26 27 Eine Seite vor Zur letzten Seite