Ergebnis der Suche (8)

Ergebnis der Suche nach: ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Quelle: "Bildungsmediathek NRW") ) und (Schlagwörter: VIDEO)

Es wurden 1595 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 2 | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u132

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008791" }

  • Konstante: Geradengleichung, waagerechte und senkrechte Gerade bestimmen, Beispiel 2 | A.02.05

    Vertikale und horizontale Geraden sind Sonderfälle von Geraden, sie haben nämlich NICHT die Geradengleichung der Form: y=m*x+b. Waagerechte Geraden (Horizontale) haben die Gleichung y=Zahl und senkrechte Geraden (Vertikale) haben die Gleichung x=Zahl. (Beide Formen nennt man auch „Konstante“ oder „Konstantengleichung“). Das zu wissen ist unglaublich phantastisch und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008365" }

  • p-q-Formel, Mitternachtsformel, Beispiel 3 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008710" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 6 | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008602" }

  • Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 2 | A.04.04

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008475" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 3 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009557" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 9 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009257" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 2 | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008921" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009248" }

  • Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 3 | A.04.07

    Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008489" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite