Ergebnis der Suche (5)

Ergebnis der Suche nach: ( ( (Freitext: BRUCHRECHNUNG) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 206 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Brüche erweitern: so erweitert man einen Bruch | B.02.02

    Um einen Bruch zu erweitern, muss man Zähler und Nenner (oben und unten) mit der gleichen Zahl multiplizieren. Meist braucht man diese Rechenregel (zum Brüche erweitern) für den Hauptnenner von Brüchen, z.B. beim Addieren von Brüchen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009813" }

  • Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen | A.43.10

    Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009533" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 6 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008913" }

  • Gebrochen-rationale Funktion / Bruchfunktionen: kurze Einführung | A.43

    Bruchfunktionen sind natürlich Funktionen in Bruchform. Tatsächlich heißen sie „gebrochen-rationale Funktionen“ oder „gebrochene Funktionen“. Das typische Merkmal dieser Funktionen sind senkrechte Asymptoten (Polstellen), die das Schaubild in zwei oder mehrere Teile aufteilt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009500" }

  • Brüche kürzen: so kürzt man einen Bruch, Beispiel 4 | B.02.01

    Um einen Bruch zu kürzen, muss man Zähler und Nenner (oben und unten) durch die gleiche Zahl teilen. Mit dieser Rechenregel kann man Brüche also vereinfachen, (man hat oben und unten kleinere Zahlen), der Bruch wird dadurch handlicher.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009810" }

  • Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 2 | A.43.10

    Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009535" }

  • Mit L'Hospital Grenzwerte bestimmen, Beispiel 3 | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009681" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 4 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008911" }

  • Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 1 | A.43.10

    Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009534" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 1 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008908" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite