Ergebnis der Suche (6)

Ergebnis der Suche nach: ( ( (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 1025 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 5 | A.14.04

    Einen ganz bestimmten Typ von Funktionen, kann man mit den „normalen“ Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: „m*x+b“ und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008840" }

  • Krümmungsradius und Bogenlänge einer Kurve bestimmen, Beispiel 2 | A.11.08

    Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man „hässlich“ auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008657" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 3 | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008599" }

  • Umkehrfunktion berechnen, Beispiel 8 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009238" }

  • Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 5 | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008780" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 2 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009556" }

  • Ableitung der Umkehrfunktion, Beispiel 6 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009264" }

  • Linearfaktorzerlegung: kurze Einführung | B.05

    Eine Linearfaktorzerlegung bedeutet, dass man eine Funktion so umschreibt, dass sie nur noch aus Klammern besteht, welche mit „Mal“ verbunden sind. Innerhalb der Klammern darf das „x“ keine Hochzahl haben. Z.B. schreibt man x²+6x+5 als Linearfaktorzerlegung um in: (x+5)(x+1). Die einfache Linearfaktorzerlegung geht über Ausklammern oder binomische Formeln, wenn´s etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009878" }

  • Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen | A.17.02

    Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008919" }

  • Symmetrie von Funktionen und wie man damit rechnet | A.17

    Funktionen können zwei Typen von Symmetrie aufweisen: Punktsymmetrie oder Achsensymmetrie zu einer senkrechten Achse. (Eine Funktion kann zu waagerechten Geraden nicht symmetrisch sein!)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008914" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite