Ergebnis der Suche (7)

Ergebnis der Suche nach: ( ( (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") und (Systematikpfad: MATHEMATIK) ) und (Schlagwörter: "FORMEL (MATHEMATIK)") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 573 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Steckbriefaufgaben zu Normalparabel und Scheitelpunkt | A.04.14

    Hat man von einer Normalparabel nur den Scheitelpunkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man die Koordinaten des Scheitelpunkts in die Scheitelform ein und ist fertig („a“ ist ja 1 oder -1, je nachdem ob die Parabel noch oben oder unten geöffnet ist). Eventuell kann man die Scheitelform noch in die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008518" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 4 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008868" }

  • Krümmungsradius und Bogenlänge einer Kurve bestimmen, Beispiel 4 | A.11.08

    Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man „hässlich“ auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008659" }

  • Parabel verschieben, Beispiel 2 | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008492" }

  • p-q-Formel, Mitternachtsformel, Beispiel 2 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008709" }

  • Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform, Beispiel 4 | A.04.04

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008477" }

  • Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 1 | A.32.04

    Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009369" }

  • Schnittwinkel von Geraden berechnen | A.02.16

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008422" }

  • Logarithmenregeln: welche man unbedingt beherrschen muss, Beispiel 6 | B.06.03

    Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)–log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009906" }

  • Logarithmenregeln: welche man unbedingt beherrschen muss | B.06.03

    Um mit dem Logarithmus umgehen zu können, sollte man zwingend die wichtigsten Logarithmenregeln beherrschen. Die wichtigsten: 1. log(A)+log(B)=log(A*B) 2. log(A)–log(B)=log(A/B) 3. log(A^n)=n*log(A). Es gibt noch ein paar weitere Logarithmenregeln, denen hat es hier aber nicht gefallen. Die sind vorher ins Kino gegangen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009900" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite