Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( ( (Freitext: GLEICHUNG) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: E-LEARNING) ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 365 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Symmetrie von ganzrationalen Funktionen bestimmen, Beispiel 1 | A.17.01

    Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008916" }

  • Integrieren von komplizierten Wurzelfunktionen | A.45.04

    Bei hässlichen Stammfunktionen, die eine Wurzel enthalten, braucht man meist die Substitution oder die Produktintegration (partielle Integration). Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel integrieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009593" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 2 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008909" }

  • Geraden, Gerade berechnen: Übungsaufgaben und Rechenbeispiele, Beispiel 1 | A.02.21

    Wir stellen die Gleichungen von drei Geraden auf, von denen man unterschiedliche Angaben hat und damit Verschiedenes weiß. Die erste Winkelhalbierende ist von Bedeutung, wir brauchen einen Schnittpunkt und einen Schnittwinkel.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008432" }

  • Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009468" }

  • Ableitung von komplizierten Wurzelfunktionen, Beispiel 1 | A.45.02

    Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009586" }

  • Wurzelfunktion ableiten | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009581" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 4

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008875" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 6 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008913" }

  • Quadratische Ungleichungen, Beispiel 1 | A.26.02

    Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009181" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite