Ergebnis der Suche (12)

Ergebnis der Suche nach: ( ( ( (Freitext: GEOMETRIE) und (Schlagwörter: GEOMETRIE) ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 295 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008423" }

  • Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 6 | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008421" }

  • Scheitelpunkt berechnen über quadratische Ergänzung und Scheitelform | A.04.04

    Die Scheitelform einer Parabel lautet: y=a*(x-xs)²+ys. Hierbei sind xs und ys die x- und y-Koordinaten des Scheitelpunktes, a ist der Streckfaktor [bei Normalparabel a=1 oder a=-1]. Hat man die Normalform der Parabel gegeben und will den Scheitelpunkt berechnen, wendet man die quadratische Ergänzung an, um auf die Scheitelform zu kommen. Aus der Scheitelform liest man dann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008473" }

  • Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 4 | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008419" }

  • Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen, Beispiel 2 | A.03.03

    Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008448" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 5 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008471" }

  • Fläche eines Dreiecks mit umschriebenen Rechtecken berechnen | A.03.03

    Eine recht intuitive Möglichkeit eine Dreiecksfläche im Koordinatensystem zu berechnen, kann man anwenden, wenn die Koordinaten der Eckpunkte ganzzahlig sind, dann kann man dem Dreieck nämlich ein Rechteck umschreiben. 1.Man spannt ein Rechteck um das Dreieck, so dass alle Seiten des Rechtecks parallel zur x-Achse und zur y-Achse sind und alle drei Eckpunkte des Dreiecks ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008446" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 6 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008472" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 3 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008469" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF, Beispiel 2 | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008468" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite