Ergebnis der Suche (7)

Ergebnis der Suche nach: ( ( ( (Freitext: GEOMETRIE) und (Schlagwörter: GEOMETRIE) ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: ANALYSIS)

Es wurden 85 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 2 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009084" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 4 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009086" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009075" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 5 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009087" }

  • Extremwertaufgabe Dreieck / Viereck: maximale Fläche berechnen, Beispiel 4 | A.21.03

    Eine der häufig auftauchenden Extremwertaufgaben: Man muss die maximale Fläche eines Dreiecks oder die maximale Fläche eines Rechtecks bestimmen, wobei ein Eckpunkt (oder zwei) auf einer vorgegebenen Funktion liegt. Man verwendet die Formel A=½·g·h bzw. A=a·b. Eine der Seiten ist meist eine waagerechte Strecke (die man als Differenz der x-Werte berechnet), die andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009045" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 6 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009081" }

  • Extremwertaufgaben | A.21

    Unter Extremwertaufgaben (Optimierungsaufgaben) werden alle Aufgaben gefasst, in denen etwas am größten oder am kleinsten werden soll (eine Dreiecksfläche, ein Volumen, ein Abstand). Es gibt zur Zeit mehrere Standardaufgaben von so einer Maximierung (oder Minimierung). Diese werden hier vorgerechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009032" }

  • Partielle Ableitung, Beispiel 1 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009653" }

  • Partielle Ableitung, Beispiel 2 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009654" }

  • Partielle Ableitung | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009652" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite