Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Schlagwörter: MATHEMATIK) ) und (Schlagwörter: ANALYSIS)

Es wurden 161 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Wurzel von komplexen Zahlen ziehen, Beispiel 1 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009755" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009708" }

  • Mit L'Hospital Grenzwerte bestimmen, Beispiel 5 | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009683" }

  • Komplexe Zahlen: kurze Einführung | A.54

    Eine imaginäre Zahl erhält man, wenn man die Wurzel aus einer negativen Zahl zieht (oder sich vorstellt, dass das ginge). Die Wurzel aus „-1“ wird mit „i“ bezeichnet (manche verwenden auch „j“ statt „i“). Zählt man zu imaginären Zahlen noch reelle Zahlen dazu, erhält man komplexe Zahlen. Beispielsweise ist „z=3+5i“ eine komplexe Zahl. Die „3“ ist der Realteil ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009722" }

  • Analysis 5 | Höhere Mathematik, wie man mit ihr rechnet und wer diese Themen beherrschen sollte

    Im Hauptkapitel „4 Analysis – Höhere Mathematik“ behandeln wir Themen, die hauptsächlich nach dem schriftlichen Abitur, bzw. hauptsächlich an der Hochschule behandelt werden. Einige, wenige Themen lernen Sie vielleicht auch VOR dem Abitur, jedoch die wenigsten hiervon.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009650" }

  • Sachsen - Prüfungsaufgaben (nur mit Schüler-/Lehrer-Passwort)

    Prüfungsaufgaben vergangener Schuljahre können für - Oberschulen, - allgemeinbildende und berufliche Gymnasien, - Berufsfachschulen für Wirtschaft und - Fachoberschulen über eine Datenbank abgerufen werden. Einige der Dokumente beinhalten jedoch Sekundärquellen. Zur Wahrung bestehender Urheberrechte für Sekundärquellen ist es erforderlich, diese Dateien in einem ...

    Details  
    { "DBS": "DE:DBS:9410" }

  • Wolfram Research Fachbereich Mathematik - Formelsammlung Mathematik

    In diesen Seiten findet man sehr viele Formeln, die man im Mathematikunterricht der verschiedensten Schulstufen braucht. Die Seiten sind in Englisch gehalten, aber derart einfach, dass man eigentlich auch ohne große Kenntnisse der englischen Sprache sich leicht zurecht findet. Die Formeln sind kommentiert und mit Beispielen belegt, mathematische Größen sind genau ...

    Details  
    { "CONTAKE": "DE:SODIS:AT.CONTAKE.244", "HE": "DE:HE:117739" }

  • Funktion untersuchen auf Definitionsmenge; Definitionslücke; hebbare Lücke; Polstellen, Beispiel 5

    Es geht hier hauptsächlich um gebrochen-rationale Funktionen (Bruchfunktionen). Bei der Berechnung der Polstellen und Definitionslücken treten manchmal Sonderfälle auf. Diese entpuppen sich dann als „hebbare Lücke“ (ein „Loch“ in der Funktion). Um sicher ALLE Sonderfälle zu berücksichtigen, macht man Folgendes: 1. Zuerst zerlegt man Zähler und Nenner in Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009676" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 3 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009719" }

  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 1 | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009724" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite