Ergebnis der Suche (10)

Ergebnis der Suche nach: (Freitext: TRIGONOMETRIE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 202 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009486" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen | A.42.10.

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009492" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 1

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009493" }

  • Aus dem Schaubild einer trigonometrischen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Es gibt einen Haufen periodischer Vorgänge in der Natur. Z.B. sieht man öfter die Aufgabe, dass monatliche Durchschnittstemperaturen angeben sind, diese werden als Punkte eingezeichnet und die Funktion kann eingezeichnet werden. Nun braucht man die Funktionsgleichung, die die Temperatur beschreibt. Wie geht man vor? Die waagerechte Mittellinie d liest man zuerst aus. Der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009495" }

  • Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08

    Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009487" }

  • Cosinus und arccos und wie man richtig damit rechnet | T.01.05

    Der Kosinus ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Ankathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Ankathete (A) und Hypotenuse (H) nennt man Arkuscosinus (im Taschenrechner ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010294" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010319" }

  • Tangens und arctan und wie man richtig damit rechnet; Beispiel 4 | T.01.06

    Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010303" }

  • Einheitskreis: was ist das und wofür man ihn braucht | T.01.03

    Der Einheitskreis hat den Mittelpunkt im Ursprung der Koordinatensystems und hat einen Radius von „1“. Man kann am Einheitskreis ganz viele Theorie zu Sinus, Kosinus, Tangens herleiten und veranschaulichen. Sie werden den Einheitskreis nicht unbedingt brauchen, man kann alles auch anders herleiten oder sich merken. Manche Leute finden die Veranschaulichung am Einheitskreis ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010288" }

  • Gradmaß und Bogenmaß und wie man richtig damit rechnet, Beispiel 3 | T.01.07

    Normalweise berechnet man Winkel in Grad. Wenn man allerdings nicht Winkel braucht, sondern Winkelfunktionen [y=sin(x), y=cos(x),..] dann ist die Messung in Grad ziemlich ungeschickt (die Gründe sind erst mal egal), in diesem Fall misst man Winkel in Bogenmaß (=Radianten).Kurz gesagt: will man die Größe eines Winkels wissen, stellt man den Taschenrechner auf Gradmaß ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010307" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite