Ergebnis der Suche (8)

Ergebnis der Suche nach: (Freitext: SUCHT) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 126 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • LFF Linearfaktorform einer Parabel aus Normalform bestimmen | A.04.06

    Aus der Linearfaktorform (LFF) der Parabel kann man die Nullstellen der Parabel recht einfach ablesen. Die LFF lautet: y=a*(x-x1)*(x-x2), wobei x1 und x2 die Nullstellen der Parabel sind. Hat man also die Normalform der Parabel gegeben und sucht die LFF, berechnet man erst die Nullstellen der Parabel (meist mit der Mitternachtsformel, also p-q-Formel oder a-b-c-Formel), setzt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008482" }

  • Einseitiges Konfidenzintervall über Tabelle berechnen, Beispiel 4 | W.20.10

    Bei einem einseitigen Konfidenzintervall hat man die W.S. von einem Intervall gegeben und sucht eine Grenze derart, dass der gesamte Bereich der Verteilung links von der Grenze oder der gesamte Bereich rechts von der Grenze genau der gegebenen W.S. entspricht. Bemerkung: Das Konfidenzintervall enthält immer den Erwartungswert und umfasst meist mehr als 80%, 90% der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010895" }

  • Schnittpunkte zweier Parabeln berechnen, Beispiel 1 | A.04.12

    Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008511" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 3 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009085" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 6 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009088" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009082" }

  • Rechter Winkel einer Geraden mit A und B, Beispiel 2 | V.08.05

    Eine der Formulierungen der letzten Jahre, die zwar immer gleich lautet, jedoch etwas verunglückt ist (man könnte auch sagen: „beschissen“). Gegeben sind eine Gerade „g“ und zwei Punkte „A“ und „B“, gesucht ist derjenige Punkt der Gerade „von welchem aus die Strecke AB unter einem rechten Winkel erscheint“. Gemeint ist: man sucht einen Punkt G der Gerade g derart, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010629" }

  • Subtraktionsverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.04

    Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Subtraktionsverfahren“ läuft folgender Maßen: Man sucht sich eine beliebige Variable aus, z.B. „x“. Nun multipliziert man beide Gleichungen derart, dass vor dieser Variable die gleiche Zahl, und auch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010047" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 1 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009083" }

  • Schnittwinkel über m=tan(?) und Steigungswinkel berechnen, Beispiel 5 | A.22.02

    Sucht man den Schnittwinkel zweier Funktionen, kann man das über den Steigungswinkel der Funktionen berechnen. Das geht so: 1.zuerst braucht man natürlich den Schnittpunkt, vor allem dessen x-Wert (nennen wir ihn xS). 2.Nun stellt man sich eine waagerechte Gerade durch diesen Schnittpunkt vor und berechnet für jede der beiden Funktionen den Steigungswinkel im Schnittpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009087" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite