Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: KUGEL) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 95 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 2 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010585" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 3 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010586" }

  • Schnittpunkt Ebene-Kugel berechnen, Beispiel 3 | V.06.09

    Schnittkreis einer Ebene mit einer Kugel: Schneidet man eine Ebene mit einer Kugel, so erhält man als Schnittfläche einen Kreis. Leider gibt es im dreidimensionalen keine Gleichung für einen Kreis. Man muss also im Normalfall „nur“ den Mittelpunkt und den Radius des Schnittkreises berechnen. Den Schnittkreismittelpunkt erhält man, indem man eine Lotgerade auf E aufstellt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010558" }

  • Schnittpunkt Ebene-Kugel berechnen, Beispiel 1 | V.06.09

    Schnittkreis einer Ebene mit einer Kugel: Schneidet man eine Ebene mit einer Kugel, so erhält man als Schnittfläche einen Kreis. Leider gibt es im dreidimensionalen keine Gleichung für einen Kreis. Man muss also im Normalfall „nur“ den Mittelpunkt und den Radius des Schnittkreises berechnen. Den Schnittkreismittelpunkt erhält man, indem man eine Lotgerade auf E aufstellt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010556" }

  • Schnittpunkt Ebene-Kugel berechnen | V.06.09

    Schnittkreis einer Ebene mit einer Kugel: Schneidet man eine Ebene mit einer Kugel, so erhält man als Schnittfläche einen Kreis. Leider gibt es im dreidimensionalen keine Gleichung für einen Kreis. Man muss also im Normalfall „nur“ den Mittelpunkt und den Radius des Schnittkreises berechnen. Den Schnittkreismittelpunkt erhält man, indem man eine Lotgerade auf E aufstellt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010555" }

  • Tangentialkegel wenn Tangenten an Kugel | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010583" }

  • Schnittpunkt Ebene-Kugel berechnen, Beispiel 2 | V.06.09

    Schnittkreis einer Ebene mit einer Kugel: Schneidet man eine Ebene mit einer Kugel, so erhält man als Schnittfläche einen Kreis. Leider gibt es im dreidimensionalen keine Gleichung für einen Kreis. Man muss also im Normalfall „nur“ den Mittelpunkt und den Radius des Schnittkreises berechnen. Den Schnittkreismittelpunkt erhält man, indem man eine Lotgerade auf E aufstellt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010557" }

  • Tangentialkegel wenn Tangenten an Kugel, Beispiel 1 | V.06.16

    Legt man von einem Punkt außerhalb einer Kugel Tangenten an diese Kugel, so erhält man unendlich viele Tangenten, die zusammen einen (unendlich großen) Tangentialkegel bilden. Der Kegel wird endlich, wenn man den Punkt als Spitze des Kegels betrachten und den Berührkreis der Tangenten an die Kugel als Grundkreis des Kegels. Normalerweise ist nun nach Volumen, Oberfläche ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010584" }

  • Kugel berechnen mit der Kugelgleichung, Beispiel 2 | V.06.07

    Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010549" }

  • Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel | T.06.07

    Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010327" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite