Ergebnis der Suche (3)

Ergebnis der Suche nach: ( (Freitext: GLEICHUNG) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 369 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 3 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008626" }

  • Wachstum berechnen | A.07

    Es gibt in der Mathematik unendlich viele Wachstumssorten. Vier davon sind so wichtig, dass sie einen Namen erhalten haben: 1. Das lineare Wachstum, 2. Das exponentielle Wachstum, 3. Das begrenzte Wachstum (heißt auch beschränktes Wachstum) und 4. Das logistische Wachstum. Es gibt zwei Möglichkeiten, Wachstumsprozesse zu berechnen. Die einfachste (wenn auch umständlichste) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008603" }

  • Verkettete Funktionen berechnen, Beispiel 1 | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009687" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 2 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008625" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 1 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008624" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009702" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 4 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009706" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 2 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009704" }

  • Normale außerhalb, Beispiel 2 | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008894" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite