Ergebnis der Suche (18)

Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)

Es wurden 460 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 12 13 14 15 16 17 18 19 20 21 22 23 Eine Seite vor Zur letzten Seite

Treffer:
171 bis 180
  • Mittelwert und Durchschnitt einer Funktion berechnen | A.18.07

    Ein mittlerer Funktionswert oder durchschnittlicher y-Wert ist nichts anderes als ein Mittelwert bzw. ein Durchschnitt. Man berechnet diesen mit einer recht einfachen Formel, die über´s Integral geht.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008970" }

  • Integralfunktion bestimmen, Beispiel 1 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008984" }

  • Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 2 | 14.05

    Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008844" }

  • Senkrechte Asymptote berechnen, Beispiel 6 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008903" }

  • So leitet man vermischte Funktionen ab, Beispiel 7 | A.13.07

    In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008810" }

  • Dreiecksfläche berechnen, Beispiel 1 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008975" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2b: Hoch-/ Tiefpunkt berechnen

    Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008579" }

  • Beispielaufgaben zu Ableitungen, Beispiel 2 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008798" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 3 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008764" }

  • Horner-Schema, Beispiel 1 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008741" }

Seite:
Zur ersten Seite Eine Seite zurück 12 13 14 15 16 17 18 19 20 21 22 23 Eine Seite vor Zur letzten Seite