Ergebnis der Suche (5)

Ergebnis der Suche nach: (Freitext: EXPONENTIALFUNKTION)

Es wurden 171 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Lernvideo: Die Ableitung der natürlichen Exponentialfunktion

    In diesem Lernvideo von Flip the Classroom wird den Schülerinnen und Schülern zunächst gezeigt, welche Funktionen sie schon ableiten können und welche nicht. Dabei stellt sich heraus, dass Exponentialfunktionen wie z. B. f(x)=2x oder f(x)=4x noch nicht mit den bisherigen Regeln abgeleitet werden können. Dann wird die Eulersche Zahl e eingeführt und Aufgaben zu f(x)=ex ...

    Details  
    { "HE": [] }

  • Die Ableitung von Exponentialfunktionen und die Eulersche Zahl

    Die Ableitung von Exponentialfunktionen und die Eulersche Zahl

    Details  
    { "HE": [] }

  • Song: Beweis der Irrationalität von e

    In diesem Kurs werden u.a. folgende Fragen beantwortet: Wie leitet man die Exponentialfunktion y = ax ab? Was ist das Besondere an y = ex? Warum ist e ≈ 2,71828? Warum nennt man e die Eulersche Zahl?

    Details  
    { "HE": [] }

  • Beschränktheit und monotones Wachstum der Folge (1+1/n)^n

    In diesem Kurs werden u.a. folgende Fragen beantwortet: Wie leitet man die Exponentialfunktion y = ax ab? Was ist das Besondere an y = ex? Warum ist e ≈ 2,71828? Warum nennt man e die Eulersche Zahl?

    Details  
    { "HE": [] }

  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 2 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009419" }

  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 3 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009420" }

  • Exponentialfunktion integrieren bzw. aufleiten | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009417" }

  • Exponentialfunktion integrieren bzw. aufleiten, Beispiel 1 | A.41.05

    Das Integrieren von e-Termen läuft ähnlich ab, wie das Ableiten. In der Stammfunktion bleibt der e-Term komplett unverändert, die innere Ableitung (die Ableitung der Hochzahl) wird runter, in den Nenner geschrieben. Man führt also eine umgekehrte Kettenregel an, auch „lineare Substitution“ genannt. Für die Stammfunktion F(x) (böse gesagt: die Aufleitung) kann man daher ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009418" }

  • Komplizierte Exponentialfunktionen ableiten, Beispiel 1 | A.41.04

    Bei hässlicheren Exponentialfunktionen kann man bei der Ableitung eigentlich nur noch zusätzlich die Produktregel oder Kettenregel auftauchen (ggf. noch Quotientenregel). Viel mehr Möglichkeiten gibt es nicht, was jedoch nicht heißt, dass alles immer nur einfach ist. Denken Sie bitte an die innere Ableitung, denn diese werden Sie mindestens ein bis zwei Mal pro Ableitung ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009414" }

  • e-Funktion (Mathematik)

    Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.

    Details  
    { "DBS": "DE:DBS:55974" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite