Ergebnis der Suche (6)

Ergebnis der Suche nach: (Freitext: D-BRANDENBURG) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 155 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Schaubild einer trigonometrischen Funktion erstellen, Beispiel 2 | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009490" }

  • Gleichungen und Nullstellen lösen | A.12

    Gleichungen lösen kann man, indem man mit dem Nenner multipliziert (den Nenner „wegmacht“) und alles auf eine Seite bringt (gleich Null setzt). Ab jetzt berechnet man sozusagen Nullstellen von einer „neuen Funktion“. Nullstellen sind Schnittpunkte mit der x-Achse. Man kann Nullstellen berechnen mit anhand von vier Möglichkeiten: a) ausklammern, b) Mitternachtsformel ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008660" }

  • Leontief: komplexe Aufgabe mit Parameter, Produktionsvektor und Marktvektor, Teil d | M.06.04

    Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst bestimmen wir die Input-Matrix. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, mit Unbekannten an verschiedensten Stellen, woraus wir ein LGS aufstellen und dann Produktions- und Marktvektor berechnen. In der letzten Teilaufgabe haben ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010236" }

  • Schaubild einer trigonometrischen Funktion erstellen | A.42.09

    Man beginnt mit der Mittellinie d und der Amplitude a. Mit deren Hilfe weiß man nun in welchem Bereich sich die Funktion bewegt (wie weit die Funktion hoch und wie weit sie runter geht). Es geht weiter mit c, womit man weiß, wo die Funktion „beginnt“. Als Letztes bestimmt man die Periode mit Hilfe von b. Nun kann man Hoch- und Tief- und die Wendepunkte bestimmen und damit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009488" }

  • Junge Wissenschaft

    Unter dem Titel "Junge Wissenschaft" erscheinen Erstveröffentlichungen von JungforscherInnen bis 23 Jahre seit 2018 im Verlag der Physikalisch-Technischen Bundesanstalt. Die Junge Wissenschaft unterscheidet sich von allen anderen Wissenschaftsmagazinen und Publikationsformaten vor allem dadurch, dass die veröffentlichten Arbeiten peer reviewed werden. Die Beiträge ...

    Details  
    { "DBS": "DE:DBS:13823" }

  • Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen: wie rechnet man damit? | A.06.01

    „Polynome“ heißen auch „ganzrationale Funktionen“ oder „Parabeln höherer Ordnung“. Während man unter „Parabel“ normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer „Parabel dritten Grades“ bzw. „Parabel dritter Ordnung“ eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit „Parabel vierter Ordnung“ ist eine Funktion gemeint, in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008584" }

  • Skalarprodukt Beweise, Beispiel 3 | V.10.04

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010677" }

  • Teilverhältnis, Beispiel 3 | V.10.02

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010669" }

  • Skalarprodukt Beweise, Beispiel 2 | V.10.04

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010676" }

  • Vektorzug | V.10.03

    Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010671" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite