Ergebnis der Suche (83)

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 879 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 77 78 79 80 81 82 83 84 85 86 87 88 Eine Seite vor Zur letzten Seite

Treffer:
821 bis 830
  • Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt, Beispiel 3 | A.04.16

    Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann „a“ berechnen. Im Detail: die Scheitelform lautet ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008530" }

  • Kubische Parabel | A.05

    Wenn in einer Parabelgleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Parabelschar“ (man hat schließlich eine ganze Schar von Parabeln). Jede einzelne Parabel nennt man „Scharparabel“ (eine Parabel aus dieser Schar). Die üblichen Fragen bei Parabelscharen sind Nullstellen (also y=0 setzen und nach ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008549" }

  • Steckbriefaufgaben zu Parabel mit Scheitelpunkt und Punkt, Beispiel 2 | A.04.16

    Hat man von einer beliebigen Parabel den Scheitelpunkt und irgend einen anderen Punkt gegeben und muss die Parabelgleichung bestimmt (man nennt solche Aufgaben auch „Steckbriefaufgabe“), so setzt man zuerst die Koordinaten des Scheitelpunkts in die Scheitelform ein. Danach setzt man den anderen Punkt und kann „a“ berechnen. Im Detail: die Scheitelform lautet ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008529" }

  • Matrizengleichung: Gleichungen mit einer Matrix als Unbekannte lösen, Beispiel 1 | M.03.04

    Eine Matrizengleichung ist einfach eine Gleichung, in welcher die Unbekannte „X“ keine Zahl ist, sondern eine Matrix. Die auftauchenden Parameter „A“ und „B“ stehen dementsprechend ebenfalls nicht für Zahlen sondern für Matrizen. Es gibt de facto zum Schluss nur lineare Gleichungen (also am Ende kein „X²“ oder so), so dass die Vorgehensweise immer die gleiche ist: ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010187" }

  • Logistisches Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.08

    Die Differenzialgleichung vom logistischen Wachstum lautet: f'(t)=k*f(t)*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane Änderung des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009342" }

  • Wie viel kostet ein Film? (Sek I+II)

    Um ein Bewusstsein dafür zu schaffen, dass die Herstellung von Filmen nicht nur eine kreative Herausforderung ist, sondern auch mit erheblichen Kosten und unterschiedlichen Arbeitsleistungen verbunden ist, bietet es sich an, die betriebswirtschaftlichen Fakten einer Filmherstellung zu betrachten. Dieser Baustein bietet verschiedene (stark vereinfachte) Szenarien aus dem ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00014351" }

  • Beschränktes Wachstum berechnen, Beispiel 5 | A.30.05

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009328" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009332" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008442" }

  • Wurzel von komplexen Zahlen ziehen, Beispiel 3 | A.54.06

    Um Wurzeln aus komplexen Zahlen zu ziehen, sollten diese Polarform haben. (Ggf. muss man die Zahl also erst in Polarform umwandeln). Will man nun die n-te Wurzel aus einer Zahl ziehen, so ist der neue Betrag die n-te Wurzel aus dem alten Betrag. Das neue Argument (=Winkel) erhält man, in dem man das alte Argument durch n teilt. Leider ist das nur EINE Lösung und beim ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009757" }

Seite:
Zur ersten Seite Eine Seite zurück 77 78 79 80 81 82 83 84 85 86 87 88 Eine Seite vor Zur letzten Seite