Ergebnis der Suche (13)

Ergebnis der Suche nach: (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 1968 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite

Treffer:
121 bis 130
  • Terme multiplizieren bzw. ausmultiplizieren | B.01.01

    Wenn man zwei Terme miteinander multipliziert, so muss man einfach jeden Term der einen Klammer mit jedem Term der anderen Klammer multiplizieren.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009787" }

  • Polynomdivision, Beispiel 1 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008734" }

  • Beispielaufgaben zu Nullstellen berechnen und Gleichungen lösen, Beispiel 5 | A.12.09

    Hier gibt es ein paar vermischte Aufgaben zu den vorhergehenden Kapiteln, also zum Thema „Nullstellen“ bzw. „Gleichungen lösen“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008752" }

  • So kann man einen schwierigen Logarithmus berechnen | B.06.04

    Für besonders hässliche Logarithmenaufgaben braucht man Logarithmenregeln, Potenzregeln, binomische Formeln, ein dreihöckriges Kamel und sonst noch ein paar Tricks.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009907" }

  • Logistisches Wachstum berechnen | A.30.07

    Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Für die Funktionsgleichung vom logistischen Wachstum gibt es leider recht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009337" }

  • Komplexe Zahlen potenzieren | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009749" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 2 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009478" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 1 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009477" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 4 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009480" }

  • Trigonometrische Funktionen integrieren bzw. aufleiten, Beispiel 3 | A.42.06

    Die Stammfunktion von sin ist -cos, die Stammfunktion von cos ist sin. Die innere Ableitung muss (wie bei jeder Integration) in den Nenner (runter), (man wendet also ganz normal die „umgekehrte Kettenregel“ bzw. „lineare Substitution“ an). Für die Stammfunktion F(x) (böse gesagt: die Stammfunktion) kann man daher die Formel anwenden: f(x)=a*e^(bx+c) == ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009479" }

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite