Ergebnis der Suche (10)

Ergebnis der Suche nach: (Freitext: BRUCHRECHNUNG) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 215 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Gleichungen auf Normalform bringen, Beispiel 12 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008673" }

  • Ungleichungen mit Brüchen, Beispiel 1 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009195" }

  • Brüche addieren, Brüche subtrahieren | B.02.03

    Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009822" }

  • Wurzelfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.45.06

    Wurzelfunktionen haben an und für sich keine Asymptoten. Wenn Wurzelfunktionen jedoch Brüche oder sonstige komplizierte Zusätze haben, geht das jedoch. Man geht also folgendermaßen vor: Man bestimmt zuerst die Definitionsmenge. Nun lässt man x einmal gegen die linke Grenze der Definitionsmenge laufen, danach gegen die rechte Grenze. Je nach dem, was da raus kommt, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009605" }

  • Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 2 | A.43.06

    Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009518" }

  • Ungleichungen mit Brüchen, Beispiel 2 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009196" }

  • Partialbruchzerlegung, Beispiel 2 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008858" }

  • Gleichungen auf Normalform bringen, Beispiel 1 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008662" }

  • Partialbruchzerlegung, Beispiel 4 | A.14.07

    Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008860" }

  • Ungleichungen mit Brüchen, Beispiel 3 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009197" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite