Ergebnis der Suche (14)

Ergebnis der Suche nach: (Freitext: FUNKTION)

Es wurden 1604 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite

Treffer:
131 bis 140
  • Funktionsanalyse einer trigonometrischen Funktion | A.42.11

    Ein paar Beispiele von Funktionsuntersuchungen von trigonometrischen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Periode der Funktion und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009496" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009248" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 5 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009253" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 1 | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009502" }

  • Kurvendiskussion Beispiel 5b: Funktion auf Symmetrie untersuchen | A.19.05

    Eine etwas hässlichere Funktionsuntersuchung einer Funktion mit Parameter. Nullstellen, Extrempunkte, Wendepunkte werden mit Parametern hässlicher. Wir kämpfen uns durch.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009026" }

  • Polynome über Nullstellen aufstellen, Beispiel 2 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009634" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009501" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 4 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009252" }

  • Fläche berechnen über Integral | A.18.01

    Kurzer Überblick über die Vorgehensweise bei Integralen: Man kann eine Fläche berechnen, indem man das Integral von „oberer Funktion“ minus „unterer Funktion“ bildet. (Eine „Funktion integrieren“ ist also nichts anderes als das Bilden der Stammfunktion). In die Stammfunktion setzt man nun die beiden Integralgrenzen ein und zieht die Ergebnisse von einander ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008934" }

  • Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 2 | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008777" }

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite