Ergebnis der Suche (17)

Ergebnis der Suche nach: (Freitext: DREIECK)

Es wurden 257 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 11 12 13 14 15 16 17 18 19 20 21 22 Eine Seite vor Zur letzten Seite

Treffer:
161 bis 170
  • Chaos und Fraktale

    Dies ist ein ausführliches Informationssystem zum Thema Chaos und Fraktale mit Grunderklärungen, Tipps für den Unterricht, Arbeitsblättern, freier Software, Programmiertipps in Logo, Pascal. Vorgestellt werden: Feigenbaum, Mandelbrotmenge, dynamische Systeme, Lindenmayer-System, Wegfraktale, Sierpinski-Dreieck, Dimension , IFS-Fraktale.

    Details  
    { "DBS": "DE:DBS:2052" }

  • Dreiecke konstruieren

    Aufgrund der Kongruenzsätze reicht es für die eindeutige Konstruktion eines Dreiecks aus, wenn man nur 3 Eigenschaften (also Längen der Seite oder Größe der Winkel) des Dreiecks kennt.

    Details  
    { "DBS": "DE:DBS:56152" }

  • Flächeninhalt Dreieck berechnen über Kreuzprodukt, Beispiel 3 | V.05.07

    Die mit Abstand einfachste und schnellste Möglichkeit, die Fläche eines Dreiecks zu berechnen, geht über das Kreuzprodukt. Man stellt zwei Vektoren des Dreiecks auf, die vom gleichen Punkt ausgehen, multipliziert beide über Kreuz und erhält einen neuen Vektor. Von diesem bestimmt man den Betrag und das Ergebnis ist der gesuchte Flächeninhalt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010521" }

  • Dreiecksfläche berechnen, Beispiel 3 | A.18.08

    Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008977" }

  • Medienpaket: Geometrische Formen

    Hier finden Sie zum kostenlosen Download ein Bilderbuch mit dem Titel ”Das kleine gelbe Dreieck”. Es lässt sich im Mathematikunterricht einsetzen, um u.a. Formen aus dem Haus der Vierecke sowie die Begriffe ”Ecken” und ”Kanten” einzuführen. Erstellt wurde es von Rebecca Jäger mit Illustrationen von Alexander Klee. Weiterhin liegen diesem Medienpaket ...

    Details  
    { "HE": "DE:HE:2794225" }

  • Aufgabe zur Veranschaulichung von Sinus und Kosinus am Einheitskreis

    Sinus und Kosinus lassen sich mit Hilfe des Einheitskreises für beliebige Winkel definieren. Diese (erweiterte) Definition schließt die (alte) Definition am rechtwinkligen Dreieck mit ein. Die hier angebotene Seite beinhaltet Aufgaben zur (dynamischen) Veranschaulichung von Sinus und Kosinus am Einheitskreis. Die Aufgaben können online bearbeitet werden. Auch ein Download ...

    Details  
    { "HE": "DE:HE:969864" }

  • Java-Applet zur Trigonometrie

    Das Applet verdeutlicht, dass die üblicherweise mit mathematischen Symbolen bezeichneten Seitenlängen, Winkeln und Winkelfunktionen in jedem Dreieck für konkrete Zahlen stehen. Außerdem illustriert es die Aussage des Sinussatzes (in zwei Versionen). Der Sinussatz wird hierbei nicht bewiesen, sondern nur illustriert. Ein multimedial aufbereiteter Beweis im Internet ist etwa ...

    Details  
    { "HE": "DE:HE:113574" }

  • Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 2 | V.03.05

    Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010439" }

  • Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 3 | V.03.05

    Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010440" }

  • Maximaler Umfang und minimaler Umfang berechnen, Beispiel 2 | A.21.04

    Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009050" }

Seite:
Zur ersten Seite Eine Seite zurück 11 12 13 14 15 16 17 18 19 20 21 22 Eine Seite vor Zur letzten Seite