Ergebnis der Suche (21)

Ergebnis der Suche nach: (Freitext: WINKEL)

Es wurden 247 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite

Treffer:
201 bis 210
  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 6 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009081" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 3 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009078" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009075" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 4 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009079" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 1 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009076" }

  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 1 | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009724" }

  • Quantenphysik multimedial: Spektrum des Drehoperators

    In diesem Video wird über das Spektrum von Eigenzuständen des Drehoperators diskutiert.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_001412" }

  • Komplexe Zahlen potenzieren, Beispiel 3 | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist „n“. Der Betrag der neuen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009752" }

  • Komplexe Zahlen potenzieren | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009749" }

  • Komplexe Zahlen potenzieren, Beispiel 1 | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist „n“. Der Betrag der neuen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009750" }

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite