Ergebnis der Suche (47)

Ergebnis der Suche nach: (Freitext: GLEICHUNG)

Es wurden 878 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 41 42 43 44 45 46 47 48 49 50 51 52 Eine Seite vor Zur letzten Seite

Treffer:
461 bis 470
  • Trigonometrische Funktionen: Ableitung | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009467" }

  • Funktionen Schaubildern zuordnen, Beispiel 3 | A.27.02

    Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009211" }

  • Polarebene | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010587" }

  • Horner-Schema, Beispiel 6 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008746" }

  • Wurzelfunktion ableiten, Beispiel 1 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009582" }

  • Kurvendiskussion von Kurvenscharen, Beispiel 1 | A.24.02

    Wir behandeln hier verschiedene Fragestellungen, die spezifisch für eine Kurvenschar ist. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009141" }

  • Quadratische Ungleichungen, Beispiel 2 | A.26.02

    Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009182" }

  • Polarebene, Beispiel 3 | V.06.17

    Legt man von einem Punkt P, der außerhalb einer Kugel liegt, Tangenten an die Kugel, so bilden alle Berührpunkte einen Kreis, einen Berührkreis. Dieser Kreis liegt in einer Ebene, welche Polarebene heißt. Um eine Gleichung davon zu bestimmen, verwendet man am besten die Formel für die Tangentialgleichung. Da setzt man Mittelpunkt und den Punkt P ein und erhält eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010590" }

  • Online-Übungen zu Mathematik (Kopfrechnen - Gleich oder ungleich) (Übung U - Addition, Subtraktion und Division) (3. / 4. Schuljahr)

    Die Online-Übung lässt sich interaktiv bearbeiten und automatisch auf Lösungsfehler überprüfen. Bei der Arbeit geht es darum, in Gleichungen jeweils das Größer-, Kleiner- oder Gleichheitszeichen richtig einzusetzen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00006497" }

  • Horner-Schema, Beispiel 4 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008744" }

Seite:
Zur ersten Seite Eine Seite zurück 41 42 43 44 45 46 47 48 49 50 51 52 Eine Seite vor Zur letzten Seite